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Question A:

Consider the time series model given by,

xt = σtzt, t = 1, 2, ... (A.1)

with zt ∼ i.i.d.N (0, 1) and

σ2t = ω + αx2t−1 + βg(yt−1), (A.2)

with ω > 0, α, β ≥ 0. Here yt is some exogenous covariate, as for example
the realized volatility, and g(·) is a continuous function satisfying g(yt) ≥ 0
for all t. The initial x0 and y0 are taken as given.

Question A.1: Suppose that β = 0. State a condition for xt to be weakly
mixing and such that Ex2t <∞. You do not have to provide any derivations.

Solution: For β = 0, xt is well-known ARCH(1) with Gaussian innova-
tions. Clearly, xt is a Markov chain with continuous transition density. In
this case one can apply the drift criterion in order to show that xt is weakly
mixing with finite second-order moments if α < 1. No derivations are needed.

Question A.2: Suppose that β > 0. Assume that yt is i.i.d.N
(
0, σ2y

)
, and

that the processes (zt) and (yt) are independent.
With vt = (xt, yt)

′ it holds that the density of vt conditional on (v0, v1, ..., vt−1)
is given by

f (vt|vt−1, ..., v0) = f(xt|vt−1)f(yt|vt−1), t ≥ 1.
Argue that vt is a Markov chain for which the transition density f (·|·) is

such that the drift criterion can be applied.
Next, suppose that g(yt) = y2t . With v = (x, y)

′ let ‖v‖2 = v′v = x2 + y2.
With drift function δ (vt) = 1 + ‖vt‖2, show that for some constant c,

E (δ (vt) |vt−1 = v) ≤ c+max (α, β)
(
x2 + y2

)
.

Conclude that ifmax (α, β) < 1, then vt is weakly mixing withE[x2t ]+E[y
2
t ] <

∞.

Solution: Clearly, by the model structure, f (vt|vt−1, ..., v0) = f (vt|vt−1) =
f(xt|vt−1)f(yt|vt−1), where

f(xt|vt−1) =
1√

2π(ω + αx2t−1 + βg(yt−1))
exp

(
− x2t
2(ω + αx2t−1 + βg(yt−1))

)
,

f(yt|vt−1) = f(yt) =
1√
2πσ2y

exp

(
− y2t
2σ2y

)
.
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Hence f (vt|vt−1) is strictly positive and continuous in vt and vt−1, since
g(·) ≥ 0 is continuous
NextE (δ (vt) |vt−1 = v) = 1+ω+αx2+βy2+σ2y ≤ 1+ω+σ2y+max (α, β) (x2 + y2),
and the weakly mixing is shown by standard arguments for the drift criterion
(e.g. letting ‖v‖2 →∞).

Question A.3: Suppose that yt is not necessarily i.i.d.N(0, σ2y) and that
g(yt) is not necessarily equal to y2t .
Let θ = (ω, α, β)′. With LT (θ) the log-likelihood function for the model, it
holds that the score for β is given by,

S (θ) = ∂ logLT (θ) /∂β =

T∑
t=1

1

2

(
x2t

σ2t (θ)
− 1
)
g(yt−1)

σ2t (θ)
,

with
σ2t (θ) = ω + αx2t−1 + βg(yt−1).

Suppose that (xt, g(yt))
′ is weakly mixing and that the true parameter values

θ0 = (ω0, α0, β0)
′ satisfy ω0 > 0, α0 < 1, and 0 < βL ≤ β0 < 1. Show that as

T →∞
1√
T
S (θ0)

d→ N
(
0,
ν

2

)
, (A.3)

where

ν = E

[(
g(yt−1)

ω0 + α0x2t−1 + β0g(yt−1)

)2]
≤ 1/β2L <∞.

Solution: (A.3) is shown by applying the CLT for weakly mixing processes.
Note that

S (θ0) =

T∑
t=1

ft,

ft =
1

2

(
x2t

σ2t (θ0)
− 1
)
g(yt−1)

σ2t (θ0)
=
1

2

(
z2t − 1

) g(yt−1)

ω0 + α0x2t−1 + β0g(yt−1)
.

It holds that
E[ft|xt−1, g(yt−1)] = 0,

and

E[f 2t ] =
1

4
E[(z2t − 1)2]E

[(
g(yt−1)

ω0 + α0x2t−1 + β0g(yt−1)

)2]
=
v

2
,
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where

v = E

[(
g(yt−1)

ω0 + α0x2t−1 + β0g(yt−1)

)2]
≤ β−20 ≤ β−2L .

Question A.4: Explain briefly what (A.3) can be used for.

Solution: (A.3) can be used for deriving the (limiting) distribution of the
MLE. This can be used for addressing the estimation uncertainty of the
model parameters, or hypothesis testing. Note that additional condtions are
needed. Some details should be provided.

Question A.5: Suppose now that yt is the square-root of the Realized
Volatility based on 10-minutes intraday log-returns on the S&P500 Index,
denoted RV 1/2

t . A plot of RV 1/2
t and its sample autocorrelation function is

given in Figure A.1.
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Figure A.1

Maximum likelihood estimation of the parameters of the model (A.1)-
(A.2) with g(RV 1/2

t ) = RV
1/2
t gave the following output:

Output: MLE of ARCH with RV
α̂ = 0.07 std.deviation(α̂) = 0.012
β̂ = 0.21 std.deviation(β̂) = 0.121
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What would you conclude in terms of the importance of Realized Volatility?

Solution: Relevant to test the null hypothesis H0 : β = 0. One obtains the
t-statistic tβ=0 = β̂/std.deviation(β̂) = 0.21/0.121 ≈ 1.75. Based on con-
ventional critical values (from the standard normal distribution), one rejects
H0 against the one-sided alternative β > 0 (which is the relevant alternative
given the constraint β ≥ 0 ). Note that no misspecification tests are given.
In relation to the results in Question A.3-A.4, one may note that the true
β0 > 0 , which rules out H0. Moreover, the ACF in Figure A.1 indicates that
RV

1/2
t is highly persistent and hence may not be weakly mixing. Overall one

should be cautious about drawing any conclusions based on the estimation
output.
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Question B:

Question B.1: As part of a discussion of "bubbles" in financial markets,
consider the asset log-price series yt in Figure B.1 with t = 1, 2, ..., 1620.
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Figure B.1

For estimation, the following 2-state Markov switching model was applied:

yt = ρstyt−1 + σstzt, t = 2, ..., T, T = 1620. (B.1)

Here zt is i.i.d.N(0, 1) distributed and y1 is fixed. Moreover, st ∈ {1, 2} is an
unobserved state variable governed by the transition matrix P = (pij)i,j=1,2
with pij = P (st = j|st−1 = i). The processes (zt) and (st) are independent.
It holds that

ρst = ρ1 (st = 1) and σ2st = σ211 (st = 1) + σ221 (st = 2) . (B.2)

Gaussian likelihood estimation gave the following output, with misspecifica-
tion tests in terms of smoothed standardized residuals ẑ∗t :

MLE of P : p̂11 = 0.98 p̂21 = 0.07
MLE of ρ : ρ̂ = 0.99
MLE of σ21 and σ

2
2 σ̂21 = 0.71 and σ̂

2
2 = 0.30

p-values:
Test for Normality of ẑ∗t : 0.12
LM-test for no ARCH in ẑ∗t : 0.10
LR-test of ρ = 1: 0.81
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Interpret the model. What would you conclude on the basis of the output
and Figure B.1?

Solution: Two-state model. AR(1) with Gaussian errors in state 1, and
Gaussian noise in state 2.
The misspecification tests based on ẑ∗t suggest that the model appears to be
well-specified. Estimates of p̂11 and p̂22 suggest that each regime is quite
persistent. Point estimate of autoregressive coeffi cient ρ, indicates a unit
root process in regime 1. This is confirmed by the LR-test.

Question B.2: In order to obtain an estimate of θ = (p11, p22, ρ, σ21, σ
2
2), the

function M (θ) given by

M (θ) =
2∑

i,j=1

log pij

1620∑
t=2

p∗t (i, j) +
2∑
j=1

1620∑
t=2

p∗t (j) log fθ (yt|yt−1, st = j) , (B.3)

can be used. Provide an expression for fθ (yt|yt−1, st = 1).

Solution: fθ (yt|yt−1, st = 1) = 1√
2πσ21

exp
(
− (yt−ρyt−1)2

2σ21

)
. Details should be

provided.

Question B.3: Explain how you would use M (θ) from (B.3) in order to
find and estimate, θ̂, of θ.
Comment briefly on what Figure B.2 shows in relation to finding θ̂.
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Figure B.2: P (st = 1|y1, ..., yT )

Solution: Use EM-algorithm to obtain estimates. This relies on computing
the smoothed probabilites p∗t (i, j) and p

∗
t (j), where p

∗
t (1) is given in Figure

B.2. Details should be provided.

Question B.4: Now assume that at time T , sT = 1. In order to forecast if
one will enter state 2 at T + 2, derive

P (sT+2 = 2|sT = 1) ,

and provide an estimate of this given the estimation output in Question B.1.

Solution: P (sT+2 = 2|sT = 1) = p22p12 + p12p11.
Based on the estimation output, we obtain the estimate P̂ (sT+2 = 2|sT = 1) =
p̂22p̂12 + p̂12p̂11 = (1− 0.07)× (1− 0.98) + (1− 0.98)× 0.98 = 3.82%.
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